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Abstract

Foundation models for structural biology have achieved remarkable performance
in predicting biomolecular structure and show promise for the design of proteins
and small molecules. Yet understanding which internal features drive their out-
puts remains challenging. Standard sparse autoencoders (SAEs), effective on
transformer-style sequence embeddings, do not transfer cleanly to pairformer-like
architectures: naively operating on pairwise representations yields a quadratic
blow-up of features and obscures concepts distributed jointly across sequence
and pair representations. We introduce PairSAE, which summarizes pairwise ten-
sors via an N-mode SVD into token-wise interaction roles, then uses a sparse
autoencoder to learn a shared set of token-level features that decode into both
sequence and pair representations. Evaluated on Boltz-2 activations for PLINDER
protein—-ligand complexes, PairSAE yields interpretable features that align with
UniProt annotations and predict Boltz-2 affinity values. These results indicate
that PairSAE links the latent space of foundation models for structural biology to
interpretable structural concepts, clarifying what the model “knows” while avoiding
pairformer-induced pitfalls that limit conventional SAEs.

1 Introduction and background

Recent advances in protein structure prediction, most notably AlphaFold and the Boltz models
[Jumper et al., 2021, |Abramson et al., [2024] [Wohlwend et al.l 2025| [Passaro et al., [2025]], have
transformed structural biology and now extend to DNA, RNA, small molecules, and their complexes.
These models achieve high accuracy without explicitly encoding physical or chemical laws, instead
exploiting statistical regularities in large datasets of experimentally determined structures. This raises
a central question: to what extent do they implicitly capture the physics and chemistry that govern
folding? Answering this requires interpretability—explanations that let researchers assess prediction
reliability and biophysical plausibility—yet the highly nonlinear architectures of deep models make
such analysis challenging.

Mechanistic interpretability has highlighted that “polysemantic” neurons arise when networks rep-
resent more features than available dimensions, forcing superposition [Elhage et al.,[2022]]. Sparse
autoencoders (SAEs) tackle this problem by reconstructing an input vector x € R™ from an overcom-
plete dictionary D € R™*? via sparse codes h € R,

h:U(EX+benc)7 k:Dh""bdeCa (1

*Work done during an internship at Flagship Pioneering.
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Figure 1: Interpretable features recovered by PairSAEs trained at layers 33 and 64 (third recycling
step) of Boltz-2. Top left: feature 889 on E. coli Complex II (PDB 1NEK); activates on frans-
membrane proteins (token F; = 0.58, complex F; = 0.65). Top center: feature 55 on influenza
N2 neuraminidase chain B (PDB 4K1I); activates on disulfide bonds (token F} = 0.79, complex
F7 = 0.81). Top right: feature 885 on an HIV-1 protease inhibitor (PDB 1HPS); activates on
protease active sites shared with a dimeric partner (token F; = 0.93, complex F; = 0.93). Bottom:
per-residue activations with UniProt ground-truth (blue).

where o is a sparsity-inducing nonlinearity. Such linear SAEs have been shown to yield interpretable
latent features in LLMs [[Cunningham et al., [2024]], protein LMs [Simon and Zoul, 2024}, [Adams et al}

[2025]), and genomics models [Brixi et al.,

Applying SAEs to protein structure models is nontrivial because these models employ pairformer
blocks [[Abramson et al, [2024] [WohlIwend et al.} 2025], [Passaro et al,[2025]: given a sequence of
Nk tokens, they maintain both a sequence embedding matrix S € R™ekX"s where each row s; is a
token embedding, and a pair tensor Z € RNk X Nk x> where slice Z; ; € R™ encodes the relation
between tokens ¢ and j.

Naively fitting an SAE to each Z; ; scales quadratically in tokens, and repeated sequence—pair
interactions suggest interpretable features might exist in superposition across both spaces. To address
this, we introduce PairSAE, which compresses pair tensors into token-level interaction roles via an
N-mode SVD, concatenates them with S, and learns a shared sparse feature basis that decodes into
both S and Z. Applied to Boltz-2, PairSAE yields features that align with UniProt annotations, and
can highlight features that are predictive of Boltz-2 binding affinity predictions.

2 PairSAE

Motivation. Our goal is to obtain token-level sparse features that jointly reconstruct sequence and
pair representations. Pairwise embeddings impose no structure, so we compress them into token-wise
summaries preserving row/column roles. A shared feature set then decodes into both spaces.
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Figure 2: Count of concepts with F; > 0.5 using complex-level recall (left) and token level (right),
grouped by UniProt annotation category (test-set counts in parentheses).

Summarizing pairwise interactions. We perform an N-mode SVD of Z to construct sequence
embeddings that capture how each token interacts in the sequence (see Appendix |A]). The mode-1
and mode-2 left singular vectors U1, U() ¢ RNoxXNex [De Lathauwer et al., 2000, Vasilescu and|
[Terzopoulos| 2002] are truncated to the first 7 columns, and concatenated into a new embedding:

IR, i=1,..., N @)

7,1

m; = [Uz(- Y

,Lir

Autoencoder. PairSAE features are obtained by encoding the concatenation of s; and m;:

hi :U(E [si || mi]+benc)a 1= L"'aNtoka (3)

with E € RP*(7:+21) b€ RP, and o a composition of BatchTopK and ReLU [Bussmann et al.,
[2024]). Decoding uses shared features:

éi = DshZ =+ biec, 227] = DZmWhi =+ DZCOlhj + bgec' (4)

We adapt a Matryoshka SAE loss [Bussmann et al., 2023] to jointly reconstruct sequence and pair
embeddings (details in Appendix [B.I).

3 Results

We evaluate PairSAE on Boltz-2 representations for pro-
tein-ligand complexes from PLINDER [Durairaj et al., Method Token F; Complex Fy
We train two models at the third recycling step,

at layers 33 and 64 (R3-L33, R3-L64). Interpretability can  Lovenn e 50 vty same
be assessed via linear probes [Gao et al.l 2025, [Simon and| . oAp R3.164 240%  49.6%
2024]], and we test whether features predict UniProt ; ;
residue annotations [UniProt, 2025] and PLINDER system  Typle 1: Percentage of concepts in the
annotations. test set with F; > 0.5.

Boltz-2 demonstrated a strong improvement on the
speed/accuracy Pareto frontier for binding affinity prediction

Passaro et al.| [2025]], and has the potential of further accelerating virtual screenings. We aim to
identify features that exhibit strong association with the predicted affinity, and to do so we build on
the hypothesis generation techniques laid out in[Movva et al| [2025]]. Details of each experiment can
be found in Appendix [B]

3.1 Linear probing

Following [Simon and Zou, 2024], we normalize each feature to [0, 1], fit a single-threshold classifier
per concept—feature pair via a grid search with candidate thresholds spaced at increments of 0.1
across the unit interval, and select the best feature by validation Fy. As noted in
[2024], it is often the case that latent features at a single token might capture properties of the entire
system, hence we follow Simon and Zou| [2024] and compute the I} score by considering the recall
at the complex level as well as the token level, resulting in two separate metrics. For each metric, we
display a count of how many features we could predict with a score above 0.5 on a test set in Figure[2]
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Figure 3: Left: negative affinity values from Boltz-2 (higher means more affine) [Passaro et al.,
2025]], and predicted values from the LASSO regression in @) Center: feature 2299 from R3-L64,
displaying strong group difference in affinity values measured by Welch t-test. Right: values of
feature 2299 overlaid on a ligand where it is highly activated.

We find that PairSAE features are highly predictive of UniProt annotations, as shown in Table[T] and
outperform classifiers based on neurons from the last layer of ESM-2-650M, considered powerful
embeddings for many downstream applications [Lin et al.,[2023].

3.2 Hypothesis generation: explaining binding affinity predictions

Because affinity is defined at the complex level, we form a complex embedding by max-pooling

features over tokens: ﬁk = max;<ng ik k = 1,...,D. We then predict AV via LASSO
[Tibshirani, |1996 Movva et al., [2025], minimizing on a training set D of 980 PLINDER complexes:

S |av; - s + 2181, )
JED

We test our results on Posebusters [Buttenschoen et al., [2024].

Our first finding is on the predictive power of the PairSAE features on affinity values: by choosing A
using cross-validation, we can predict AV with an R? of 0.528 from R3-L64 using 291 features out
of 16,384. Errors increase at higher predicted affinity, partly due to label shift (fewer high-affinity
examples in training than in PoseBusters; see Fig. [3).

Moreover, by letting \ increase we can highlight features that carry most of the predictive power. By
looking at the top 10 most influential features at both layers we find most of them to be activated on
ligands, for which we have very limited annotations. In Figure [3| we highlight a feature from R3-L64,
selected by setting A in (3)) such that only one feature has nonzero coefficient. This feature activates
on complexes with higher binding affinity, with a strong group difference when compared to inactive
complexes. Additional results are reported in Appendix [C|

4 Conclusion

We introduced PairSAE, a sparse dictionary learning method that discovers a shared feature basis
jointly explaining sequence and pair representations in pairformer-style models. We showed that
these features encode biophysically meaningful concepts and can surface hypotheses about a model’s
inner workings for downstream tasks such as binding-affinity prediction. Future work includes
scaling up the study to more layers and recycling steps, integrating PairSAE features into automated
interpretability pipelines to accelerate concept discovery, and developing steering methods for
interpretable protein design via feature interventions. A key limitation is that we did not map
ligand-activating sparse features to specific concepts, due to the lack of ligand annotations.
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A N-mode Singular Value Decomposition

The mode-k unfolding of a tensor 7~ € R™Xn2X X1 g obtained by flattening all but the k"

dimension into a matrix 7*) € R™*ILix " Following|De Lathauwer et al.|[2000al, every tensor
admits the higher-order singular value decomposition

T:CXlU(l) XQU(Q)"' XNU(N),

where C € R"™1*"2X" XN g g core tensor, X denotes the mode-k tensor—matrix product, and
each U() € R™ > is an orthogonal matrix obtained from the left-singular vectors of the mode-k
unfolding 7*) [Vasilescu and Terzopoulos, 2002]. We refer to U*) as the mode-% left singular
vectors of 7.

Unlike matrices, truncating the ordered left-singular vectors to their r; < ng columns and fitting a
new, smaller core tensor does not yield an optimal (71, 72, . . ., 7 5)-rank approximation of 7 in the
Frobenius norm [De Lathauwer et al.,[2000b|]. Multiple algorithms have been proposed to improve
upon a naive truncation [De Lathauwer et al.,2000bl Vannieuwenhoven et al., 2012, but convergence
guarantees are limited to local optima [Ishteva et al., 201 1.

B Experimental Details

B.1 Loss function

Choosing the dictionary size D can have major consequences on the types of features that are learned,
and a larger dictionary does not necessarily translate to better performance on downstream tasks
[Templeton et al.| 2024} |Gao et al.,|2025]]. It has recently been shown that a Matryoshka SAE loss
[Bussmann et al., 2025]] exhibits robust performance across dictionary sizes. This is attained by
slicing the decoder matrix and the feature vector across several nested levels (we use three nested
widths ¢; < ¢ < ¢3 = D), and summing them to compute the objectives

3
E(Sl) =
k=

2

Si—D[ ]h [1:ci] bdec

(6)

1Ck

2
L(zi;) Z ‘ Zij — Dzm“l ck]hG[l:Ck] - D[Z:inlli%]hj’[lzck] — b 9
Following [Gao et al., 2025], we include an auxiliary loss function £, that can "revitalize" dead
features, resulting in the loss

N

Nmk Nl()k
K(S, Z) = Z (ﬁ(sl) + >\pair Z E(Zij)) + AauxLaux- ®)
i=1 =1

We speed up training by we computing a Monte Carlo approximation of the second summation
and only consider a single j for each i. We set Apair = Ny, k to have both representation be equally
weighted.

B.2 PairSAE

Following the standard implementation of Boltz-2, our sequence representation has dimension
ns = 384, while the pair representation has dimension n, = 128. We compute the N —mode SVD by
simply flattening Z to its mode-1 and mode-2 unfolding, and obtain the SVD of these matrices using
numpy . linalg.svd. We truncate to the first 7 = 64 columns, and if Ny < r we fill the remaining
entries with zeroes. After concatenating sequence embeddings s and the SVD-derived embedding m
into a 512-dimensional vector, we perform a layer normalization.

We let PairSAE have a dictionary size of D = 16, 384, corresponding to an expansion factor of 32x.
We train on minibatches of 2,048 tokens using the Adam optimizer [[Kingma and Ba, [2014]], with
learning rate 0.0002. We train for 250,000 steps on 40,000 systems sampled from the PLINDER
training set [Durairaj et al.| [2024]] with at most 512 residues, and at each step we sample tokens
at random. Due to compute constraints, we do not use the MSA when training and evaluating the
PairSAE.
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Figure B.4: Boltz-2 affinity values for the training and test set used in the hypothesis generation task.

B.3 Linear probing

We consider annotations from UniProt [[UniProt, 2025], and binarize them by one-hot encoding each
annotation. We map each chain in a PLINDER system to its UniProt annotation using the SIFTS
database [[Velankar et al.l 2012]], and match sequences with a minimum of 95% correspondance
between the two databases, ignoring sequences that can’t be matched.

We also consider a subset of the system-level annotations found in PLINDER, as well as the PLIP
interaction fingerprints [Salentin et al.,2015] that are also found in PLINDER. Iterating over features
h; fort =1,..., D and concept annotations y; for j = 1,..., N,, we consider a simple classifier

9 = 1{h; > 735} (&)

We pick the best threshold 7;; on a training set of 7,680 complexes from the PLINDER training
set, we select the best feature ¢ for each concept j based on F} scores on a validation set of 2,560
complexes, and finally report F; scores on a test set comprised of 5,120 randomly selected complexes.
We restrict our analysis to concepts that appear on at least five different complexes.

B.4 Hypothesis generation

We build a training set for LASSO regression by obtaining Boltz-2 predictions for affinity values in
980 systems from PLINDER, held out from the PairSAE training set. The test set is Posebusters
[Buttenschoen et al., [2024]. In figure [B.4] we highlight how these differ in terms of the response
variable, and note the lack of high affinity complexes in our training set.

LASSO regression is fit using sklearn.linear_model.Lasso [Pedregosa et al.l2011]. Detailed
results for both models are presented in Table See Figure for true vs predicted Boltz-2
affinity values based on the PairSAE at R3-L33.

As mentioned in Section [B] we did not use the MSA for our analysis. In Figure [B.6] we compare the
Boltz-2 output with and without MSA, and note a substantial difference in predicted affinity values
and affinity probability. As MSA-based predictions are conditioned on more information, we expect
these to be more accurate. In future work, we aim at replicating our analysis using MSA inputs.

Table B.2: LASSO regression on max-pooled PairSAE features. p denotes Spearman rank correlation.

Prediction metrics Ranking Sparsity
Model ) (CV) Train R? Train MAE Train RMSE Test R? Test MAE Trainp Test p Nonzero
R3-L64 0.009 0.816 0.275 0.131 0.528 0.607 0.913 0.805 291
R3-L33 0.006 0.770 0.302 0.164 0.367 0.713 0.893 0.706 237
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Figure B.5: Negative affinity values from Boltz-2 (higher means more affine), and predicted values
from the LASSO regression in (3) using the PairSAE at R3-L33.
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Figure B.6: Comparison of having MSA on and off in the Boltz-2 affinity values and affinity
probabilities, in the Posebusters dataset.

C Additional results

In Figure [C.7) we display how lasso coefficients evolve for varying levels of regularization, and
highlight features having strong association with the predicted affinity. Among these, we highlight
how feature 1744 and 1770 from R3-L33 activate in two ligands in Figure [C.8]

In Section[3.2] we highlighted feature 2299 from R3-L64, that exhibits a strong group difference by
activating on complexes with higher predicted affinity. In R3-L33 we found a feature representing
the opposite, and activating only samples that on average have a lower predicted affinity. Group
differences for these two features are presented in Figure [C.9]

In Figure[C.I0] we display values of feature 3888 overlaid on ligands where it is activated. In these
examples, the predicted complexes do not appear to present a plausible docked pose: the small
molecule is displaced from the protein interface and does not form stable contacts.



0.6

0.4 1

0.2 -

B U

0.0 4 0.00 |

—0.05 +

-0.10 4

-0.15 1

T T T T T T T T T T T T
-1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -0.5 -1.0 -15 -2.0 -2.5 -3.0
10910 (A) 10910 (A)

Figure C.7: LASSO regression coefficients for varying values of the A regularization parameter in
(), fit on the PairSAE at R3-L33 (left) and R3-L64 (right).

Figure C.8: Ligands activating on feature 1770 (left) and feature 1774 (right). These are the top 2
positive features that predict the Boltz-2 affinity in R3-L33, as highlighted in FigurelC_?7l
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Figure C.9: Group difference in Boltz-2 affinity values when splitting the dataset based on whether
a feature activates or not. Left: feature 2299 from R3-L64, training set. Right: feature 3888 from
R3-L33, training set. Bottom: feature 3888 from R3-L33, test set.
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Figure C.10: Examples where feature 3888 is activated.
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