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Chapter 1

Introduction

In many application domains of statistics, datasets in which features outnumber the obser-

vations have become ubiquitous. For this reason, recent advancements in the broad field

of statistics have focused on this particular situation by devising new methods that are

robust to a large number of features. The field of high-dimensional statistics encompasses

research efforts aimed at solving problems arising in this setting. Classical methods often

fail in high-dimensional settings, and the problem is circumvented by applying techniques

that filter out irrelevant features. This is the case of linear models fit by least-squares, as

the problem of defining uniquely the regression coefficients and the related standard errors

becomes ill-posed when the number of predictors is larger than the sample size (Bühlmann

and Van De Geer, 2011). Fitting linear models in this setting requires variable selection,

which can be defined as the process of identifying a subset of relevant predictors to be

included in the model (Tadesse and Vannucci, 2021).

Foundational techniques in the domain of frequentist statistics have been established,

often by selecting a priori a subset of variables according to an objective criterion (see

the review by Miller, 2002) or by adjusting the loss function with a penalty term that

depends on the dimensionality of the model. Prominent examples in this sense include the

Lasso (Tibshirani, 1996), Ridge regression (Hoerl and Kennard, 1970), and other penalized
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2 CHAPTER 1. INTRODUCTION

likelihood methods (Fan and Li, 2001). Bayesian statistics has addressed the problem by

embedding in the hierarchical model latent variables that determine the inclusion of each

predictor in the regression model. The approach is particularly attractive, as it provides

a quantification of the uncertainty related to the choice of including each variable by

means of posterior inclusion probabilities. The preference for parsimonious models can

then be expressed by specifying a prior over the variables that determine the sparsity of

the model. Foundational approaches in this setting have been established by Mitchell and

Beauchamp (1988) with the usage spike-and-slab priors, that have later been developed in

their continuous version (George and McCulloch, 1997). Other lines of research focused on

shrinkage priors, that implicitly introduce a penalty term in a similar fashion to penalized

regression methods, and it has been shown that both Lasso (Park and Casella, 2008) and

Ridge can be interpreted as pertaining to this class of models. A recent effort aimed at

bridging the gaps between the frequentist and the Bayesian approaches while borrowing

strengths from both is the spike-and-slab Lasso by Ročková and George (2018).

While the Bayesian approach presents attractive features, the computational hurdle

required to compute the posterior in such large parametric spaces necessitates efficient

computational methods. Foundational work on stochastic search variable selection by

George and McCulloch (1993) deployed Gibbs sampling techniques to search for promis-

ing models, while the reversible jump MCMC approach in Green (1995) involved the usage

of a Metropolis-Hastings algorithm. A typical challenge for the Gibbs sampler in this set-

ting arises when the features are strongly correlated, as this significantly harms the ability

of the algorithm to reach convergence. In high-dimensional settings, the problem is made

even worse by the large number of parameters, and strong computational advantages can

be obtained by ensuring that the sampler focuses on promising variables with high inclu-

sion probability. The tempered Gibbs sampler (TGS) developed by Zanella and Roberts

(2019) ensures an informed choice of the variables to update and mitigates the correla-

tion between variables by considering a flattened version of the posterior distribution. A
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variation of the method, termed weighted TGS (wTGS), enables the algorithm to focus

on the variables with higher posterior inclusion probability while ensuring irreducibility

and, in turn, convergence to the posterior.

The promising features of the algorithm motivated the research questions that the

thesis addresses, tackling aspects related to the practical implementation of the tempered

Gibbs samplers considering them in the context of Bayesian variable selection. Further-

more, simulations in a new challenging setting are analyzed, enabling a direct comparison

with state-of-the-art methods. New directions for future research are proposed and intro-

duced, paving the way for future developments of the algorithms.

The thesis is structured as follows. Chapter 2 provides a wide-encompassing literature

review of Bayesian inference and computational methods, introducing the most important

tools used in Bayesian variable selection as well as foundational results. The review

proceeds with Chapter 3, that studies model selection focusing on the Bayesian variable

selection problem, with a particular emphasis on the computational challenges related to

high-dimensional settings. The attention is then directed to the Gibbs sampler and how it

can be leveraged in the context of Bayesian variable selection, underlining its criticalities

and how they can be addressed by deploying the tempered Gibbs sampling techniques.

Simulations highlighting the characteristics of the algorithms and providing a comparison

on several metrics are then presented in Chapter 4, and Chapter 5 focuses on future

directions of work that can be waged for evolving wTGS into an algorithm that deploys

continuous-time Markov chains. Finally, basic results from numerical linear algebra are

deployed in the Appendix A to propose alternative implementations of the methods.



Chapter 2

Bayesian inference

Throughout the following chapters, probabilistic models and simulation techniques are

implemented through the Bayesian framework. This perspective is concerned with the

very definition of probability. While classical interpretations of probability define it as

the limiting frequency of random and repeatable events, the Bayesian approach postu-

lates a subjective interpretation, and probability provides a quantification of uncertainty.

Unknown quantities, such as parameters indexing a statistical model for the data, are con-

sidered random variables. Consequently, a joint probability distribution is constructed for

the data and the parameters. This can naturally be expressed with the specification of

a probability distribution for the parameters, called prior distribution, and a conditional

distribution of the data given the parameters, called likelihood. It should be noted that

only the observed data is actually considered, as the likelihood is a function of the param-

eters, and the uncertainty in the parameters is expressed by a probability distribution.

By contrast, a frequentist interpretation would consider the parameters as fixed and build

confidence intervals that depend entirely on the distribution of possible datasets.
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2.1. BAYESIAN PARAMETRIC MODELS 5

2.1 Bayesian parametric models

For the following chapters, the analysis will focus on parametric models. For the sake

of completeness, a formal probabilistic definition of such objects is found in Schervish

(1995).

Definition 2.1.1. Let (S,A, µ) be a probability space, let (X ,B(X )) and (Ω,B(Ω)) be

measurable spaces equipped with a Borel σ-algebra. Let X : S → X and Θ : S → Ω

be measurable. Then, Θ is a parameter and Ω a parameter space. The conditional

distribution for X given Θ is called the parametric family of distributions of X. It is

denoted by

M = {Pθ : ∀A ∈ B(X ), Pθ(A) = P(X ∈ A|Θ = θ), for θ ∈ Ω}.

For Pθ being a probability measure on (X ,B(X )) that is absolutely continuous with

respect to a measure ν on (X ,B(X )), the Radon-Nykodim derivative is denoted

dPθ

dν
(x) = p(x|θ),

and it is commonly referred to as likelihood function. Next, the main ingredients of

Bayesian inference are introduced. The prior distribution of Θ is the probability measure

µΘ over (Ω,B(Ω)) that is induced by Θ from µ. The marginal distribution of X is denoted

as µX , and it follows that, using Fubini-Tonelli, we can express it for some A ∈ B(X ) as

µX(A) =
∫

Ω

∫
A
p(x|θ)dν(x)dµΘ(θ) =

∫
A

∫
Ω
p(x|θ)dµΘ(θ)dν(x),

that shows µX to be absolutely continuous with respect to ν, with the expression of the

marginal density of X being

p(x) =
∫

Ω
p(x|θ)dµΘ(θ).
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Let X × Ω denote the sample space, then the joint distribution on this space is de-

termined by the prior distribution and the statistical model {Pθ : θ ∈ Ω} . Assuming

absolute continuity of the prior distribution and the model, then a set B ⊆ X × Ω has

probability

P((X,Θ) ∈ B) =
∫ ∫

1B(x, θ)p(x|θ)p(θ)dxdθ,

for p(θ) being the prior density.

One of the most attractive features of Bayesian inference is its principled way to update

probability distributions as new data comes available. Information is encoded through

the conditional distribution of Θ given the data X = x, and we denote it as µΘ|X . This

distribution is called posterior distribution, and its computation follows from the Bayes’

theorem under the assumption of Pθ being dominated by some measure ν.

Theorem 1 (Bayes’ theorem). Let X have a parametric family P0 of distributions with

parameter space Ω. Suppose Pθ ≪ ν for all θ ∈ Ω with conditional density p(x|θ). Let

µΘ be the prior of Θ, and µΘ|X be the posterior distribution of Θ given X.

Then, µΘ|X ≪ µΘ and the Radon-Nykodim derivative is

µΘ|X

µΘ
(θ|x) = p(x|θ)∫

Ω p(x|θ)dµΘ(θ)

for every x such that the dominator is neither 0 nor infinite. For every other x, the

posterior can be defined arbitrarily.

A proof can be found in Schervish (1995).

Besides being used to make direct inferences about Θ, the posterior distribution is

deployed for the task of prediction of future observations. Let X1 = x1, . . . , Xn = xn be

the data at our disposal, and let them be conditionally independent given Θ. Then, the

predictive density of future observations Xn+1, . . . , Xn+k is
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p(xn+1, . . . , xn+k|x1, . . . , xn) =
∫

Ω

k∏
i=1

p(xn+i|θ)dµΘ|X1,...,Xn(θ|x1, . . . , xn).

2.1.1 Exchangeability

In the precedent expression, the result relied on an assumption of conditional indepen-

dence. This assumption, replacing the existence of a "fixed and unknown θ" and the

stronger frequentist assumption of independent data, implies a notion of symmetry in

the data generating process known as exchangeability. It should first be noted that, as

suggested by Bernardo and Smith (1994), no learning from experience takes place within

a sequence of independent data. It is apparent that in such a case, for any 1 ≤ m < n

p(xm+1, . . . , xn|x1, . . . , xm−1) = p(xm+1, . . . , xn).

When this is not the case, some form of dependence must be assumed. When the labels

specifying the order of the data are uninformative, and therefore the joint distribution of

the data is invariant to permutations, the data are exchangeable.

Definition 2.1.2 (Exchangeability). A finite set X1, . . . , Xn of random variables is said

to be exchangeable under a probability measure P if the joint distribution satisfies

P (X1, . . . , Xn) = P(Xπ(1), . . . , Xπ(n))

for every permutation π defined on the set {1, . . . , n}. An infinite sequence is infinitely

exchangeable if every finite subsequence is exchangeable.

From a practical standpoint, the information obtained from any data point is no

more relevant than any other, regardless of the position in the sequence of observations

(Bernardo and Smith, 1994). The notion of exchangeability comes in handy in providing

a theoretical justification for the usage of the main tools of Bayesian inference. This result
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is De Finetti’s representation theorem, and the version presented below can be found in

Schervish (1995).

Theorem 2 (De Finetti’s representation theorem for Bernoulli models). An infinite se-

quence {Xn}∞
n=1 of Bernoulli random variables is exchangeable if and only if there is a

random variable Θ with distribution Q and taking values in [0, 1] such that the joint

probability function of every finite subsequence X1 = x1, . . . , Xn = xn is

P (x1, . . . , xn) =
∫ 1

0

n∏
i=1

θxi(1− θ)1−xidQ(θ).

Furthermore, if the sequence is exchangeable, then the distribution Q is unique and

1
n

n∑
i=1

Xi → Θ almost surely.

The learning process is represented by updates of the prior, via Bayes’ theorem, into

the posterior distribution. Operationally, this update is used to define the form of the

posterior predictive distribution (Bernardo and Smith, 1994).

Corollary 1. For X1, X2, . . . defined as in Theorem 2, the posterior predictive distribu-

tion has form

P (xm+1, . . . , xn|x1, . . . , xm) =
∫ 1

0

n∏
i=m+1

θxi(1− θ)1−xidQ(θ|x1, . . . , xm), 1 ≤ m < n

where

dQ(θ|x1, . . . , xm) =
∏m

i=1 θ
xi(1− θ)1−xidQ(θ)∫ 1

0
∏m

i=1 θ
xi(1− θ)1−xidQ(θ)

The representation theorem defined above can be extended over the case of Bernoulli-

distributed data to any infinitely exchangeable sequence of random variables in R with

probability measure P . The result is the most general form of De Finetti’s representation

theorem, stated below following Bernardo and Smith (1994).
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Theorem 3 (General representation theorem). Let X1, X2 . . . be an infinitely exchange-

able sequence of random variables, taking values in R and with probability measure P .

Then, there exists a probability measure Q over the space F of distribution functions in R,

such that the joint probability function of every finite subsequence X1 = x1, . . . , Xn = xn

is

P (x1, . . . , xn) =
∫

F

n∏
i=1

F (xi)dQ(F )

where, for Fn being the empirical distribution function defined by x1, . . . , xn,

Q(F ) = lim
n→∞

P (Fn).

A proof is provided in Chow et al. (1988).

2.2 Bayesian computation

For µΘ|X being the posterior distribution, a statistician might be interested in computing

the posterior mean for some functional h, denoted as µΘ|X(h). Resorting to an unnormal-

ized version of the posterior distribution, that is

µu
Θ|X(θ|x) ≡ p(x|θ)µΘ(θ) ∝ µΘ|X(θ|x),

we can compute the posterior mean by solving the integral

µΘ|X(h) = EΘ|X [h(Θ)] =
∫

Ω h(θ)dµu
Θ|X(θ|x)∫

Ω dµ
u
Θ|X(θ|x)

An analytical solution is typically unfeasible in situations where Ω is high-dimensional.

The problem of computing integrals from probability distributions with untractable ana-

lytic expression is typically solved by numerical methods. A sample X1, . . . , XN from the



10 CHAPTER 2. BAYESIAN INFERENCE

posterior is used to compute the Monte Carlo estimator of the integral.

µ̂Θ|X(h) = 1
N

N∑
n=1

h(Xn)

Deterministic and stochastic algorithms have been devised to simulate such samples,

and what follows is a brief overview of two of the most popular techniques: importance

sampling (IS) and Markov chain Monte Carlo (MCMC).

2.2.1 Importance sampling

When direct simulation from the posterior is unfeasible, importance sampling allows using

samples from another distribution to approximate an integral with respect to the posterior.

A comprehensive review can be found in Ch.8 of Chopin et al. (2020). Let G be a

distribution we can easily sample from, and such that µΘ|X ≪ G. For f(·) being the

posterior density and g(·) the density of G, termed proposal density, the method deploys

the identity:

µΘ|X(h) =
∫

Ω
h(x)f(x)dx =

∫
Ω
h(x)f(x)

g(x) g(x)dx.

For w(x) = f(x)/g(x) being the IS weights, the Monte Carlo estimator is then obtained

by taking

µ̂Θ|X(h) = 1
N

N∑
n=1

w(Xn)h(Xn), Xn ∼ G. (2.1)

A criticality of IS is its poor scalability with respect to the dimensionality of the

target. The issue becomes apparent when one targets the joint distribution f(·) of a

random vector X ∈ Rd with components that are independent both under f and under

the proposal q. Then, the IS (normalized) weight for a sample is w(X) = ∏d
i=1 w(Xi) and

its variance under the proposal is

Varq(w(X)) = Eq[w(X)2]− 1 =
d∏

i=1
(1 + Varq(wi(Xi)).
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Clearly, variance grows exponentially with respect to d unless it decreases rapidly as d

grows. This problem is typically referred to as the curse of dimensionality of IS.

It is often the case that evaluating the density point-wise is unfeasible, and it is

only possible up to a normalizing constant. In this case, a density fu(·) ∝ f(·) is used to

compute the unnormalized IS weight wu(x) = fu(x)
g(x) . The method is termed self-normalized

importance sampling (SIS), and the Monte Carlo estimator is then:

µ̂Θ|X(h) =
∑N

n=1 w
u(Xn)h(Xn)∑N

n=1 w
u(Xn)

, Xi ∼ G

2.2.2 Markov Chain Monte Carlo

One of the most widely used classes of algorithms for posterior computation in Bayesian

inference is MCMC. A review of these techniques in general state spaces can be found in

Tierney (1994), Robert and Casella (2004), and Roberts and Rosenthal (2004). Results

will be presented for general state spaces, but, as infinite state spaces are beyond the

scope of this review, some results are explicitly stated for finite state spaces. A reference

for MCMC in finite state spaces is Levin and Peres (2017).

MCMC algorithms obtain a sample from the posterior distribution by simulating a

Markov chain with transition kernel P (x, dy), for x, y ∈ Ω. Sufficient conditions must be

established to guarantee that the chain converges asymptotically to the posterior of inter-

est. If simulation from such a kernel is possible, an estimate of µΘ|X(f) is then obtained

from the sample X0, . . . , XN ∼ µΘ|X(·) by computing the ergodic average, corresponding

to the Monte Carlo estimator in 2.1. The posterior target will henceforth be referred to

as π to improve readability.

The first property such a chain must possess is referred to as invariance or stationarity

with respect to the posterior π, meaning that if a sample X0 is drawn from π, every other

Xt obtained from a π-stationary Markov chain will be distributed as π. This means that
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the chain satisfies ∫
x∈Ω

π(dx)P (x, dy) = π(dy). (2.2)

In practice, the distribution of the starting point is not necessarily π, and stationarity

in itself provides no guarantees of asymptotic convergence, as this simple example in

Roberts and Rosenthal (2004) shows:

Example 1. Let X = {1, 2, 3} and π be uniform on X . A Markov chain (Xn) with

transition matrix

P =


1/2 1/2 0

1/2 1/2 0

0 0 1


is π-stationary, but the distribution of Xn does not converge to π.

The reason convergence does not occur in this case is the reducibility of the chain. Let

P n(x,A) be the transition kernel at the nth-step, namely

P n(x,A) = µ(Xn ∈ A|X0 = x).

For finite state spaces, a chain is irreducible if there exists an integer t such that P t(x, y)

for any x, y ∈ Ω. A problem can be encountered when the state space Ω is uncountable,

as in the continuous state space case Ω = R, since the condition is impossible (Roberts

and Rosenthal, 2004). For this reason, the weaker notion of ϕ-irreducibility is introduced.

Together with aperiodicity, defined negatively below, the two notions form the necessary

conditions for the asymptotic convergence theorem to be stated.

Definition 2.2.1 (ϕ-irreducibility). A Markov chain is ϕ-irreducible if there exists a non-

zero σ-finite measure ϕ on Ω such that, for any A ⊆ Ω with ϕ(A) > 0, there exists an

n = n(x,A) > 0 such that P n(x,A) > 0.

Definition 2.2.2 (Aperiodicity). A π-stationary Markov chain on Ω is periodic if there
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exist a d ≥ 2 such that a collection of disjoint subsets Ω1, . . . ,Ωd ⊆ Ω (with π(Ω1) > 0)

satisfies P (x,Ωi+1) = 1 for all x ∈ Ωi with 1 ≤ i ≤ d− 1, and P (x,Ω1) = 1 for x ∈ Ωd. A

chain is aperiodic if it is not periodic.

Asymptotic convergence

Distance from stationarity is measured in terms of the total variation distance, which

represents the maximum difference between the probabilities assigned by two probability

measures to an event A ∈ B(Ω).

Definition 2.2.3 (Total variation distance). The total variation distance between two

probability measures π1 and π2 on the σ-algebra B(Ω) is:

||π1 − π2||T V = sup
A
|π1(A)− π2(A)|

Theorem 4 (Asymptotic convergence theorem). Let P (·, ·) be a π-invariant Markov

kernel on Ω. If it is ϕ-irreducible and aperiodic, then for π-a. e. x ∈ Ω,

lim
n→∞

||P n(x, ·)− π(·)||T V = 0

Notably, limn→∞ P n(x,A) = π(A) for all measurable A ⊆ Ω.

It is possible to define a bound on the convergence rate to the limiting distribution.

This property is referred to as uniform ergodicity, and conditions ensuring it are estab-

lished below following Tierney (1994) and Roberts and Rosenthal (2004).

Definition 2.2.4 (Uniform ergodicity). A π-stationary Markov chain is uniformly ergodic

if

||P n(x, ·)− π(·)||T V ≤Mρn, n = 1, 2, 3, . . .

for some ρ < 1 and M <∞.
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Definition 2.2.5. A set C ∈ B(Ω) is small if there exists a positive integer m, a constant

β > 0, and a probability measure ν on B(Ω) such that

Pm(x, ·) ≥ βν(·) for all x ∈ C,

defined as the minorization condition M(m,β,C, ν) for transition kernel P .

Theorem 5. A Markov chain is uniformly ergodic if and only if the state space Ω is

small.

A proof can be found in Nummelin (1984). It should be noted that if the state space

is finite, all irreducible and aperiodic Markov chains are uniformly ergodic (Roberts and

Rosenthal, 2004).

Metropolis-Hastings algorithm

In practical applications, the focus of the problem reduces to finding a kernel satisfying

2.2. A simpler way to impose this condition is by letting the chain be reversible, and

stationarity is then implied.

Definition 2.2.6. A Markov Chain on Ω is π-reversible, with π being a probability

distribution on Ω, if

π(dx)P (x, dy) = π(dy)P (y, dx), x, y ∈ Ω

Proposition 1. If a Markov chain is π-reversible, then π is stationary for the chain.

It is therefore sufficient to construct a Markov chain that satisfies reversibility. This

result is deployed in the Metropolis-Hastings algorithm. Let π be the target density

in the sampling procedure, and let πu be its unnormalized version. Let Q(x, dy) be

an arbitrary transition kernel with unnormalized density q(x, y), such that Q(x, dy) ∝
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q(x, y)dy. The Metropolis-Hastings algorithm generates a new proposal Xt = y at each

step t conditionally on Xt−1 = x drawn at the previous iteration, sampling from Q(x, dy).

The proposal is then accepted with an acceptance probability α(x, y), that in the original

Metropolis-Hastings algorithm is

α(x, y) = min
[
1, πu(y)q(y, x)
πu(x)q(x, y))

]

The resulting Markov kernel can be formally expressed as

PMH(x, dy) = Q(x, dy)α(x, y) + r(x)δx(dy)

where r(x) =
∫

Ω(1− α(x, y))Q(x, dy)

Proposition 2. The kernel PMH(x, dy) produces a Markov chain that is π-reversible.

This algorithm is particularly attractive because it lifts the need to find a kernel

satisfying reversibility, enforcing it through the correction by an acceptance step. It is

therefore sufficient to compute the density point-wise at each iteration.

Gibbs sampler

Let πu be the unnormalized k-dimensional density of a random vector X = (X1, . . . , Xk),

where X ∈ X . The Gibbs sampler simulates in turn from the conditional distributions of

the components of X, conditionally on all the other components. Such distributions are

termed full conditionals.

For a set Sx,i,A = {y ∈ X ; yj = xj for j ̸= i, and yi ∈ A}, the kernel for the full conditional

of Xi is defined as

Pi(x, Sx,i,A) =
∫

A πu(x1, . . . , xi−1, t, xi+1, . . . , xk)dt∫∞
−∞ πu(x1, . . . , xi−1, t, xi+1, . . . , xk)dt.

Variations of the Gibbs sampler are obtained by picking the components in different
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orders, or more formally by combining the kernels in a different manner. Two of the most

popular schemes are:

• Random-scan Gibbs sampler: at each step an update is performed on the vari-

able whose index has been sampled from a uniform distribution on {1, . . . , k}. The

kernel is then obtained by a mixture of the kernels for the full conditionals

P = 1
k

k∑
i=1

Pi. (2.3)

• Deterministic-scan Gibbs sampler: coordinates are updated sequentially in a

deterministic order. The kernel is then obtained by cycle of the kernels for the full

conditionals

P = P1P2 . . . Pk. (2.4)

Tierney (1994) argues that while a single kernel is typically not irreducible, a com-

bination that encompasses the entirety of X can produce an irreducible kernel. The

manuscript provides theorems showing the validity of kernel cycles and mixtures, of which

Gibbs samplers are particular instances.

Theorem 6. Let P1 and P2 be two π-invariant kernels, and P1 be uniformly ergodic.

Then, for 0 < α < 1, the mixture kernel αP1 + (1− α)P2 is uniformly ergodic.

Theorem 7. Let P1 and P2 be two π-invariant kernels, and let P1 satisfy the minorization

condition M(1, β,Ω, ν) for some β and ν. Then, the cycle kernels P1P2 and P2P1 are

uniformly ergodic.

The minorization condition with m = 1 is always satisfied by Metropolis-Hastings

kernels with an independent proposal, therefore it is sufficient to insert such a kernel in

any mixture or cycle of π-invariant kernels to gain uniform ergodicity.

When closed-form expressions of the full conditionals are unavailable, one can resort to
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Metropolis-within-Gibbs samplers. Simulations are drawn from kernels that are stationary

with respect to the full conditionals, and invariance is guaranteed by an acceptance step.

2.2.3 Asymptotic variance

A key quantity in assessing convergence of a Monte Carlo estimate is asymptotic variance,

and a definition from Deligiannidis and Lee (2018) is presented below.

Definition 2.2.7. For a generic method MC that produced a sample X1 = x1, . . . , Xn =

xn ∈ X to approximate a function h ∈ L2(X , µ) by an ergodic average ĥN , the asymptotic

variance of that ergodic average is

var(h,MC) := lim
N→∞

Nvar
 1
N

N∑
n=1

h(xn)
 , xn ∼ π

This quantity is fundamental in establishing Central Limit Theorems for several al-

gorithms. A notable result in this sense is Theorem 5 in Tierney (1994). The result

assumes uniform ergodicity of the sample produced by a stationary chain, but it follows

from section 3.3 of Roberts and Rosenthal (2004) that this condition is always satisfied if

we reduce the focus to aperiodic and irreducible Markov chains in finite state spaces.

Theorem 8. Let X1, . . . , XN ∈ X be a sample from a Markov chain MC that is π-

stationary, and suppose h ∈ L2(X , π) is real valued and that X is finite. Then, there exist

a real number var(h,MC) such that the distribution of
√
N(ĥN −π(h)) converges weakly

to N(0, var(h,MC)) for any initial distribution.

Chan and Geyer (1994) established that the variance for stationary Markov chains

started in stationarity (X1 ∼ π for a target π) is

NVar(ĥN) = Var(h(X1)) + 2
N−1∑
k=1

N − k
N

Cov(h(X1), h(Xk)).
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Then, the asymptotic variance is equal to

lim
N→∞

NVar(ĥN) = Var(h(X1)) + 2
∞∑

k=1
Cov(h(X1), h(Xk)),

that clearly shows how the quality of a MCMC ergodic average depends on the degree of

autocorrelation between the samples drawn from the Markov chain.

Asymptotic variance can also be determined for SIS (Deligiannidis and Lee (2018)), and

for an estimate ĥN with IS weights w it is

var(h, SIS) = Eh[ĥNw].

Another common quantity used to evaluate the quality of the sample used in a Monte

Carlo estimate is the effective sample size (ESS). As it shall be seen, this quantity can be

defined as a transformation of the asymptotic variance. Let Var(h̃n) = Varπ(h(X))/n be

the variance of a Monte Carlo estimator for a sample drawn directly from the target π.

Then, ESS for Markov chains can be defined as

ESS(ĥN) = N
Var(h̃N)
Var(ĥN)

= N

1 + 2∑∞
k=1 Corr(h(X1), h(Xk))

The quantity is similarly defined for the set of weights w1:N of a SIS estimate, see Chopin

et al. (2020).

ESS(w1:N) := (∑N
n=1 w(Xn))2∑N
n=1 w(Xn)2

An attractive feature of this quantity is its interpretability that, as the name suggests,

is related to the true size of uncorrelated samples among those that were simulated.

Indeed, for the SIS we have that ESS(w1:N) ∈ [1, N ], and if k weights are one and the

rest are zero, then ESS(w1:N) = k. The quantity is also particularly important when we

are interested in estimating the variance of the ergodic average for MCMC (Robert and

Casella, 2004). The standard variance estimator N−2∑N
n=1(h(Xn)− ĥN) cannot be used,
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since the correlation of the samples would result in an underestimation of the variance of

ĥN . Reliability of the variance estimate can be improved by considering the estimator

1
N × ESS(ĥN)

N∑
n=1

(h(Xn)− ĥN)2. (2.5)



Chapter 3

Bayesian variable selection

When approaching an inference problem, choosing the right statistical model is of crucial

importance. The problem of model selection is approachable from a probabilistic stand-

point through the theoretical tools of Bayesian inference. An extensive review on this

topic is provided in Chipman et al. (2001).

3.1 General framework of Bayesian model selection

Let M = {M1, . . . ,MK} be a collection of parametric models for the data, denoted as

Y . Assuming identifiability up to a parameter θk, the conditional density of the data

for a given model will be p(Y |θk,Mk). In the Bayesian approach, a prior distribution

is assigned to each model in M and to the value of θk. Combining the distributions in

a hierarchical model induces a joint distribution, that allows for model selection based

on the conditional distribution of the model given the data. The resulting model in

hierarchical form can be represented as

Y |θk,Mk ∼ p(Y |θk,Mk),

θk|Mk ∼ p(θk|Mk),

Mk ∼ p(Mk).

(3.1)

20
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The problem of model selection reduces to finding those with higher posterior probability,

with the posterior easily obtainable, with Bayes’ theorem, as

p(Mk|Y ) = p(Y |Mk)p(Mk)∑
k p(Y |Mk)p(Mk) , (3.2)

with

p(Y |Mk) =
∫
p(Y |θk,Mk)p(θk|Mk)dθk (3.3)

being the marginal likelihood ofMk. Pairwise comparison of models are based on poste-

rior odds, that are the product between Bayes factors and prior odds:

p(M1|Y )
p(M2|Y ) = p(Y |M1)

p(Y |M2)
× p(M1)
p(M2)

Challenges in this approach are the specification of the prior distributions in 3.1 and the

computation of the posterior in 3.2.

It should be noted that besides taking the mode of the posterior distribution, one

could also resort to a model averaging approach. Assuming the aim is to make inferences

about some quantity of interest ζ, performing Bayesian model averaging would amount

to computing the posterior of ζ as

p(ζ|Y ) =
K∑

k=1
E[ζ|Mk, Y ]p(Mk|Y ),

and the posterior mean would be defined as

E[ζ|Y ] =
K∑

k=1
E[ζ|Mk, Y ]p(Mk|Y ).
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Prior specification

The simplest prior specification for p(Mk) is that of uniform priors for the different

models:

p(Mk) = 1
K

Under such a choice, p(Mk|Y ) ∝ p(Y |Mk) and pairwise comparisons reduce to a compar-

ison of Bayes factors. This choice has some significant drawbacks, as it does not account

for the "size" of each modelMk, and for the similarity between models. The choice of pa-

rameter priors p(θk|Mk) is typically aimed at reducing computational cost of the marginal

(3.3). If the model belongs to an exponential family of distributions, conjugate priors are

a common choice.

Posterior computation

Computing the integral in (3.3) and, consequently, the denominator in (3.2) can be chal-

lenging, especially in high-dimensional settings. MCMC techniques can be used to simu-

late directly from the posterior, and they allow for a search in the space of models.

Let η denote the couple (θk,Mk), such that each η specifies a density p(Y |η). A MCMC

approach would build a Markov chain by simulating a sequence η(1), η(2) from a transition

kernel P (η(j−1), dη(j)) having as stationary distribution the posterior p(η|Y ). Examples of

practical implementations of these techniques are Gibbs Samplers (GS) and Metropolis-

Hastings (MH) algorithms. In the former, considering the case of η ∈ Rp, samples are

obtained simulating iteratively from the full conditional p(ηi|η−i, Y ) for i = 1, . . . , p. MH

algorithms sample a candidate η from an arbitrary transition kernel, specified by the

proposal density q(η(j)|η(j−1)), and then proceed with the acceptance step.

Computations are facilitated when closed-form expressions of the marginal density

p(Y |Mk) are available. In alternative, easily computable approximations can be used,

such as the Laplace approximation, detailed in Tierney and Kadane (1986). Let p(Y |Mk) =
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∫
eh(θk)dθk with h(θk) ≡ log p(Y |θk,Mk)p(θk|Mk) being a smooth and positive function,

and let θ̂k be the MAP estimator of θk. Computing the Taylor expansion and evaluating

it at θ̂k yields h(θk) ≈ h(θ̂k) + 1
2(θk − θ̂k)′H(θ̂k)(θk − θ̂k), where H(θ̂k) is the Hessian of h.

Plugging it in the expression of p(Y |Mk) and solving the Gaussian integral gives

p(Y |Mk) ≈ (2π)dk/2|A(θ̂k)|1/2p(Y |θ̂k,Mk)p(θ̂k|Mk)

Where A(θ̂k) is −H(θ̂k)−1 and dk is the dimension of θk. When obtaining the poste-

rior mode θ̂k is costly, it is also possible to expand at the maximum likelihood estimate

θ̂MLE
k and substitute A(θ̂k) with Fisher’s information matrix. Schwarz (1978) showed

that a further approximation can be obtained considering A = nA(unit), taking the log,

and ignoring the terms that are asymptotically constant. What is left is the Bayesian

Information Criterion (BIC) approximation, defined as

log p(Y |Mk) ≈ log p(Y |θ̂k,Mk)− (dk/2) log n.

3.1.1 Bayesian variable selection for the normal linear model

The analytical tractability of linear models makes them particularly feasible for the anal-

ysis of Bayesian variable selection. Let Y be the variable of interested, referred to as

response variable, and suppose it is explainable by a linear combination of a set of pre-

dictors X1, . . . , Xp, observed in n samples. Let X denote the design matrix, that is the

n × p matrix representation of such samples. The problem of model selection then re-

duces to variable selection, that is finding an optimal subset of the p many explanatory

variables. This setting is typical in high-dimensional regression problems, where p is par-

ticularly large and we are interested in making inferences about a target variable Y with

a parsimonious model.
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Normal linear model

Suppose that the response variable Y is continuous, and that the error is normally dis-

tributed. Then, the model is typically referred to as normal linear model, and it takes the

form

Y |X, β, σ ∼ Nn(Xβ, σ2I) (3.4)

where β ∈ R
p and σ ∈ R+. An extensive review of this model is provided in Gelman

et al. (1995).

Being in a Bayesian setting, a joint distribution is induced by placing a prior on the

parameters β and σ. It is common practice to assume X as non-random (as in a controlled

experiment). In any case, it is immediate to see that, even if X were given a prior p(X|ψ),

an assumption of independence between the priors of {β, σ} and ψ would be enough to

factor the posterior as p(ψ, β, σ|X, Y ) = p(ψ|X)p(β, σ|X, Y ), justifying an analysis of

p(β, σ|X, Y ) alone (Gelman et al., 1995). For this reason, conditioning on X is omitted

in the following notation.

The exponential form of the model allows for a conjugate normal prior on β|σ, whereas

for σ2 a standard noninformative prior is assigned as in Fernández et al. (2001), being

p(σ2) ∝ 1/σ2. The prior is improper, and it could be interpreted as an Inverse-Gamma

prior with the two parameters equally close to zero. The priors then take the form

β|σ2 ∼ N(β0, σ
2Σ)

σ2 ∼ p(σ2) ∝ 1/σ2

It is common to set β0 = 0, representing a neutral opinion about the sign of the effect of

each predictor, and to choose either Σ = c(X ′X)−1 with c ∈ R+ or Σ = cIn. In the latter

case, it is easy to see that the log posterior takes the form of a penalized sum of squares,

analogous to the loss function for ridge regression. The former formulation is typically
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referred to as g-priors and it is motivated in Zellner (1986). Essentially, the parameter

c regulates the width of the region of plausible values for β. A smaller c translates into

higher confidence that the effect of the predictors is close to zero. Simulations performed

in Fernández et al. (2001) in the case where p(γ) = 2−p suggest that a reasonable choice (in

terms of predictive performance) is c = max{p2, n}. It is possible to formulate the variable

selection problem by introducing a vector indexing the variables we wish to include in the

model. Such vector is

γ = (γ1, . . . , γp) ∈ {0, 1}p

Denoting by |γ| = ∑p
i=1 γi the number of active predictors, we use Xγ and βγ to indicate

the design matrix and the coefficients vector containing only the included variables. Prior

independence is assumed for components γ, therefore the prior distribution takes the form

of a product of Bernoulli random variables:

p(γ) =
p∏

i=1
wγi

i (1− wi)(1−γi) (3.5)

where a prior inclusion probability can be specified for each predictor, or reduce the model

by setting wi ≡ w ∀i. In that case, w represents the expected proportion of included

variables. The hierarchical model under this new formulation becomes

Y |β, σ, γ, w ∼ Nn(Xγβγ, σ
2I)

β|σ, γ, w ∼ N(0, σ2Σγ)

σ2 ∼ p(σ2) ∝ 1/σ2

γi|w ∼ Bern(w) i = 1, . . . , p

(3.6)

where Σγ is either c(X ′
γXγ)−1 or Iγ. The model in 3.6 with g-priors will be the one under

consideration for the following chapters, but it is only one of the many possibilities present

in the literature regarding Bayesian variable selection.
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3.1.2 Gibbs sampling for Bayesian variable selection

Performing variable selection in this setting is possible by making inference on the pos-

terior p(γ|Y ). The most desirable case, as it is the fastest in computational terms, is

when a closed-form expression of the posterior is available. This is achievable when a

closed-form expression for p(Y |γ) is obtainable, that is the likelihood marginalizing over

β and σ, since

p(γ|Y ) ∝ p(Y |γ)p(γ).

When this is not possible, one can resort to MCMC methods that simulate a sequence

of γ whose transition kernel converges asymptotically to the posterior as in 4. An esti-

mate of the posterior inclusion probabilities (PIPs) can then be obtained. When the full

conditional is available, it is possible to simulate a sequence

γ(1), γ(2), . . . (3.7)

directly by running a Gibbs sampler on the full conditional p(γi|γ−i, Y ) of each component.

When the component-wise conditionals of γ are unavailable, the sequence 3.7 is obtained

as a subsequence of the Markov chain

β(1), σ(1), γ(1), β(2), σ(2), γ(2), . . . (3.8)

Simulating this sequence with a Gibbs sampler requires an iterative simulation from the

full conditionals of all the parameters, that are

p(β|σ2, γ, Y )

p(σ2|β, Y )

p(γi|γ−i, β) , i = 1, . . . , p

(3.9)
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Computation of the full conditionals

For the model introduced in the previous section, it is possible to derive the full condi-

tionals of each component of γ, sampling 3.7 directly. As suggested in the supplement of

Zanella and Roberts (2019), we can easily derive p(γi = 1|γ−i, Y ) by computing the ratio

r = p(γi=1|γ−i,Y )
p(γi=0|γ−i,Y ) and then recovering the conditional using p(γi = 1|γ−i, Y ) = r/(1 + r).

Standard computations of the marginal likelihood for Bayesian linear regression models

with g-priors yield (Chipman et al., 2001)

p(Y |γ) ∝ (1 + c)−|γ|/2(S(γ))−n/2 (3.10)

where S(γ) = Y ′Y − c
1+c

Y ′Xγ(X ′X)−1X ′
γY . We can then use 3.10 to get

r = p(γi = 1|γ−i)
p(γi = 0|γ−i)

p(Y |γ−i, γi = 1)
p(Y |γ−i, γi = 0) = w

1− w
1

(1 + c)1/2

(
S(γ0)
S(γ1)

)n/2

where γ0 represents the vector with γ−i and γ = 0, and γ1 contains γ−i and γ = 1.

Computational efficiency can be improved by following some tricks suggested in Smith

and Kohn (1996), and further improvements from Zanella and Roberts (2019).

First, to avoid unnecessary computations, we can obtain recursive updates for the

S(γ) term. At each iteration, either S(γ0) or S(γ1) has already been computed at the

previous step. Considering an iteration in which γ = γ0 before the sampling step, it is only

necessary to obtain S(γ1). The method proceeds as follows. Define Fγ0 = (X ′
γ0Xγ0)−1.

Being symmetric positive definite, it admits a unique Cholesky factorization Fγ0 = LL′,

for L being a lower triangular matrix. These operations are typically not particularly

expensive, as in most applications with real data the amount of active regressors |γ|

is small (an alternative implementation when the dimensionality of γ makes the two

operations unfeasible is presented subsequently).

Let I = {j : γ0
j = 1} denote the set of indices of variables included in γ0, then for
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v = X ′Y we consider vγ0 = (vj)j∈I . Let A = X ′X, whose elements included in the γ0

configuration are denoted as ai = (Aji)j∈I . Then, computation of S(γ1) for a given S(γ0)

can efficiently be obtained by

S(γ1) = S(γ0)− c

1 + c
di(v′

γ0Fγ0ai − vi)2, (3.11)

where di = (Aii − a′
iFγ0ai)−1. The result can be obtained deploying the Woodbury ma-

trix identity and Schur complements (see Appendix B of Beal (2003)), and additional

calculations can be found in the supplement of Zanella and Roberts (2019). Introducing

the Cholesky decomposition of F defined above, computations can further be reduced by

using

di =
∑
j∈I

∑
h∈I

AihLhj

 =
∑
j∈I

(BL)2
ij, (3.12)

for B being the p × |γ| matrix of columns of A being included in γ. This amounts to

summing the squared ℓ2 norms of the rows of BL.

Next, the case where the iteration starts with γ = γ1 and we want to retrieve S(γ0)

is considered. It should be noted that quick updates of Fγ1 = (X ′
γ1Xγ1)−1 are possible

at each iteration, deploying results from linear algebra regarding the updates of matrices

like Fγ1 when rows of Xγ1 are removed. Following Hager (1989), consider the case when

the row is added in the last position. Such a case can easily be retrieved by permuting

rows of Fγ1 before the inital step. When removing the variable j, let

Fγ1 =

X ′
γ0Xγ0 X ′

γ0xj

x′
jXγ0 x′

jxj


−1

=

Fγ1[−j,−j] Fγ1[ · ,−j]

F ′
γ1[ · ,−j] Fγ1[ j, j]

 .
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Then,

Fγ0 = Fγ1[−j,−j] − F−1
γ1[ j, j](F

′
γ1[ · ,−j]Fγ1[ · ,−j]).

In the case where |γ| is large and the initial computation of Fγ and its Cholesky factor

is expensive, it is possible to reduce computations by using the Cholesky decomposition

of X ′
γXγ directly and never computing the inverse. As the steps defined above are mainly

concerned with computing quadratic forms, they can be performed efficiently by skipping

the matrix inversion step. Considering for example v′
γFγvγ, the result can be obtained

by taking the Cholesky factor C such that CC ′ = X ′
γXγ, and then solving the following

triangular systems of equations defined in Algorithm 1 (Rue and Held, 2005).

Algorithm 1 Solving quadratic form with no inverse
1: Compute CC ′ = X ′

γXγ

2: Solve C · vγ = z with forward substitution
3: Solve C ′ · z = w with backward substitution
4: return v′

γ ·w

Cholesky factors are then updated at each step following the deletion of columns in

X ′
γXγ, and computations to make the operation efficient are reported in Appendix A.1.

This alternative implementation for computing the full conditionals, based on the code of

Zanella and Roberts (2019), can be found in Appendix A.2.

Point estimation of regression coefficients

Suppose a Gibbs sampler was run to produce a chain as in 3.7. In a practical problem of

regression, it might be insightful to compute a point estimate of the regression coefficients.

Two ways by which the task can be achieved are presented in Smith and Kohn (1996).

The first method is based on an estimate of the posterior mode of γ. The support of the

posterior distribution p(γ|Y ) has size 2p and it is hence difficult to find the mode by direct

enumeration, but an estimate can be obtained exploiting the fact that the Gibbs sampler

iterations lie in a region of high probability (Smith and Kohn, 1996). Hence, the value of
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γ(t), t = 1, . . . , T maximizing p(γ|Y ) is taken as the estimate of the posterior mode, and

it can be denoted as γ̂M . Considering the likelihood as in 3.10 and the prior as in 3.5,

computing such a quantity is negligible once the samples are obtained. The regression

coefficients estimate β̂ can then be obtained using least squares and considering only the

variables included in γ̂M , that would essentially work as a plug-in estimate. Therefore,

E(β|Y, γ̂M , σ
2) = c β̂

1 + c
, (3.13)

where β̂ = (X ′
γ̂M
Xγ̂M

)−1X ′
γ̂M
Y and c being the hyperparameter defined in Section 3.1.1.

The second method considers an estimate of the posterior mean of β directly, by

performing an averaging of the conditional posterior mean E(β|Y, γ(t), σ2) over the γ(t), t =

1, . . . , T samples. The estimate is then

β̂ = T−1
T∑

t=1
E(β|Y, γ(t), σ2), (3.14)

and the expression can be computed for each iteration since Zellner’s g-priors allow for a

quick evaluation of the posterior mean, that is

E(β|Y, γ(t), σ2) = c β̂

1 + c
, (3.15)

for β̂ = (X ′
γ(t)Xγ(t))−1X ′

γ(t)Y and c defined as above.

Another method, described in Narisetty and He (2014), is median probability thresh-

olding. Considering the PIPs for each γ, the model includes the variables having PIP

above a threshold. A common choice for the threshold is to fix it at 0.5, but it is also

possible to tune the parameter using some criterion such as the BIC.
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3.2 Tempered Gibbs Sampler for variable selection

3.2.1 Limitations of standard Gibbs sampling

As seen in Section 2.2.2, the Gibbs sampler enjoys attractive properties and enough flex-

ibility to make it the preferable choice for many sampling tasks. Nonetheless, the con-

vergence of the algorithm can be impeded or dramatically slowed down if the posterior

distribution has some particular attributes. One of such characteristics is a strong cor-

relation between variables. As can be seen from the plot in Figure 3.1, full conditionals

for highly correlated variables are often very concentrated, and this harms the ability of

the chain to perform big jumps that speed up exploration and, in turn, convergence to

stationarity. Another critical issue is when the support of the posterior can be partitioned

in non-connected areas (Robert and Casella, 2004). The first scenario is typical in high-

dimensional BVS, as it is often the case that some features are highly correlated. The

problem is typically referred to as multicollinearity.

The problem is circumvented in Zanella and Roberts (2019) by introducing a new

sampling scheme combining Gibbs Sampler and importance sampling, termed Tempered

Gibbs Sampling (TGS) scheme. Considering a general setting where we want to sample

a x = (x1, . . . , xd) ∈ X with density f(x), the algorithm makes use of a modified ver-

sion of the full conditionals {g(xi|x−i)}d
i=1. Each modified full conditional g(xi|x−i) is

absolutely continuous with respect to the original full conditional f(xi|x−i), and there is

no requirement for them to admit a global distribution g(x). The algorithm resembles a

self-normalized IS within each GS step, and it is presented in Algorithm 2.

An asymptotic convergence result providing theoretical justification for the use of the

TGS scheme, provided by the authors, is presented in Proposition 3.

Proposition 3. fZ is a probability density function on X , and the Markov chain induced

by steps 1 and 2 of the TGS scheme is fZ-reversible. Assuming Z(x) to be bounded away
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Algorithm 2 TGS
1: Sample a coordinate i ∈ {1, . . . , d} with probability

pi = g(xi|x−i)
f(xi|x−i)

for i = 1, . . . , d.

2: Sample xi ∼ g(xi|x−i).
3: Assign to the new xi a weight w(x) = Z−1(x), where Z(x) = d−1∑d

i=1 pi(x).

from zero and bounded above on compact sets, and the TGS chain to be fZ-irreducible,

then

ĥT GS
T =

∑T
t=1 w(xt)h(xt)∑T

t=1 w(xt)
a.s.−→ Ef [h], as n→∞,

for every h ∈ L1(X , f).

An attractive feature of the scheme is the possibility to specify as modified full condi-

tionals a tempered version of the original full conditional, when this is available in closed

form:

g(xi|x−i) = f (β)(xi|x−i) = f(xi|x−i)β∫
X f(xi|x−i)βdxi

, β ∈ (0, 1) (3.16)

Another choice proposed by the authors is a symmetric mixture of the original and

the tempered version.

g(xi|x−i) = 1
2f(xi|x−i) + 1

2f
(β)(xi|x−i) (3.17)

This latter formulation is particularly preferred, as the tempered version is prone to

move away from the region of high probability under the target, resulting in a higher

variance of the IS weights. In both cases, considering a tempered conditional circumvents

the problem with highly correlated variables that traditional Gibbs sampling techniques

may encounter. It does so by:

• Making informed choices for variable updates, as opposed to random-scan GS tech-

niques.
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• Enabling bigger jumps between samples, resulting in a wide-ranging exploration of

the sample space.

The example plotted in Figure 3.1 displays a sample from a standard random-scan GS and

one from TGS using a tempered proposal as in 3.16 in two dimensions. The random vari-

ables are distributed as a bivariate normal, each with zero mean and unit variance, and the

plot displays samples for levels of correlation ρ equal to 0.5, 0.99, and 0.998. Both samplers

are ran for T = 200 iterations, and they are started at (Y (0)
1 , Y

(0)
2 ) = (2.5, 2.5).Simulations

for the tempered proposals have been generated using rejection sampling, and the tem-

pering coefficient is β = 1 − ρ. The R code to reproduce the results can be found in

Appendix A.3.

Robustness to high-dimensionality

As seen in section 2.2.1, importance sampling might scale very poorly with respect to the

dimensionality of the target. TGS mitigates this problem, and theoretical guarantees for

the growth of the asymptotic variance are provided in Zanella and Roberts (2019).

Lemma 1. Let h ∈ L1(X , f) and h̄(x−i)− Ef [h]. If var(h, TGS) <∞, then

var(h, TGS) = Ef [h̄2w]
1 + 2

∞∑
t=1

ρt

 ,
with ρt being the lag-t autocorrelation of (w(xn)h(xn))∞

n=1 for a TGS chain started in

stationarity.

A useful interpretation of this Lemma comes from noticing that the first term is the

asymptotic variance of an SIS using fZ as the proposal, while the second is that of a

Markov chain. Robustness to high dimensionality can then be studied by analyzing the

variance of the importance weights associated with the SIS component.
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ρ = 0.5

ρ = 0.99

ρ = 0.998

Figure 3.1: Black dots are samples simulated from a random-scan Gibbs Sampler (left
plots) and a TGS (right plots). The size of dots in the left plots is proportional to the
importance weights w(x) assigned at each sample.
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Proposition 4. Let b = supi,x
f(xi|x−i)
g(xi|x−i) . For W = w(X) and X ∼ fZ,

V ar(W ) ≤ b− 1 and var(h, SIS) ≤ bvarf (h),

where varf (h) is the standard Monte Carlo variance.

Therefore, as long as b is low, the SIS contribution to the variance of TGS is kept

under control. It is the case for example when a symmetric mixture is used, and since b

is at most 2, V ar(W ) ≤ 1.

3.2.2 TGS for BVS

One can find a natural application of the TGS scheme in the problem of Bayesian Variables

Selection outlined in Section 3.1.1. Considering the normal linear model specified in 3.6,

it is possible to perform iterated TGS steps on a modified full conditional of the inclusion

parameters γ, that for simplicity can be set to be the uniform distribution over the two

states {0, 1} (that is equivalent to setting β = 0 in the formulation 3.16). In this case,

the algorithm reduces to the following steps:

Algorithm 3 TGS for BVS
For t = 1, . . . , T :

1: Sample i from {1, . . . , p} with probability

pi(γ) = 1
2p(γi|γ−i, Y ) for i = 1, . . . , d.

2: Set γi ← 1− γi

3: Compute a weight w(γ) = Z(γ)−1 for the new state γ, where Z(γ) = 1
p

∑p
i=1 pi(γ)
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wTGS for BVS

It can be proven that TGS samples each index i ∈ {1, . . . , p} with the same frequency (see

Zanella and Roberts (2019)), and clearly in high-dimensional problems having variables

with low posterior inclusion probability this might be very inefficient. The authors devised

a version of TGS aimed at solving this problem, by weighting each pi in step 1 of Algorithm

3 with a quantity ηi(γ−i) proportional to the posterior inclusion probability. In BVS, this

quantity was chosen to be ηi(γ−i) = p(γi = 1|γ−i, Y ) + k
p
, with k < p being a fixed

parameter. The algorithm, termed weighted Tempered Gibbs Sampler (wTGS), proceeds

as follows.

Algorithm 4 wTGS for BVS
For t = 1, . . . , T :

1: Sample i from {1, . . . , p} with probability

pi(γ) = p(γi = 1|γ−i, Y ) + k/p

2p(γi|γ−i, Y ) for i = 1, . . . , d.

2: Set γi ← 1− γi

3: Compute a weight w(γ) = Z(γ)−1 for the new state γ, where Z(γ) ∝ ∑p
i=1 pi(γ)

Computational complexity

Computations required at each iteration derive mostly from the scheme used to update

the full conditionals, defined in 3.1.2. Assuming that X ′X and Y ′X are precomputing

before running the algorithm, the cost is dominated by the computation of the (di)p
i=1

terms in 3.12, that require O(p|γ|) operations at each iteration. If instead computing

or storing X ′X is prohibitive and one wants to update the entries of X ′
γXγ and B (see

3.12) sequentially at each iteration, the cost is n and is performed at most p times, that

compounded with the previous term results in a O(np + p|γ|) cost. In comparison, the

standard Gibbs sampler runs at a cost that is lower of order |γ|/p.
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Following the framework in Zanella and Roberts (2019), computational complexity is

defined as the product between cost per iteration and the number of iterations required

to obtain MC estimator with effective sample size of order 1. While the former has been

established following the implementation to update the full conditionals, the latter can

be determined considering the relaxation time of the Markov chains deployed in each

algorithm. It can be shown that the relaxation times of the three algorithms are not

significantly impacted by different correlation structures, and Table 3.1 reviews compu-

tational complexity results for the three algorithms under mild assumptions (see Zanella

and Roberts, 2019 for further details). The results are defined for s = Ef (|γ|).

GS TGS wTGS

Case 1 O(ps2) O(p2s) O(ps2)

Case 2 O(nps) O(np2) O(nps)

Table 3.1: Comparison of the computational complexity of GS, TGS, and wTGS. Case 1
refers to the case of pre-computed X ′X and X ′Y , whereas in case 2 the entries referring
to the element that is being updated have to be computed at each iteration.

Rao-Blackwellisation

In many statistical applications, it is possible to reduce the variance of an estimator δ(X)

by conditioning on another random variable Y, using the inequality

var(E[δ(X)|Y ]) ≤ var(δ(X)).

Following Robert and Casella (2004), if δ = 1
T

∑T
t=1 h(Xt) is an estimator of Ef [h(X)], the

estimator δ∗(Y ) = 1
T

∑T
t=1 Ef̃ [δ(X)|Yt] obtained by simulating X from the joint f̃(x, y)

dominates δ in terms of variance. This technique is referred to as Rao-Blackwellisation,

and it is applicable to compute lower-variance estimates of Posterior Inclusion Probabili-
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ties (PIPs) {p(γi = 1|Y )}p
i=1.

While a standard Monte Carlo estimator would compute the PIPs by averaging in-

clusions of each γi of a Markov Chain chain ran for T as T−1∑T
t=1 1(γ(t)

i = 1), a Rao-

Blackwellised estimator would be

p̂(γi = 1|Y ) =
∑T

t=1 w(γ(t))p(γ(t)
i |Y, γ−i = γ

(t)
−i)∑T

t=1 w(γ(t))
(3.18)

where w(γ(t)) = Z(γ(t))−1 are the importance weights. TGS and wTGS compute the

quantities needed in 3.18 at each step, therefore the estimator can be computed recursively

at each iteration with no extra costs.
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Simulation studies

4.1 Simulated data

The full potential of the algorithms presented in the previous section can be illustrated

considering some simulations in particularly nontrivial situations. Two such situations

were described in Zanella and Roberts (2019), both considering a data matrix X that is

a zero-mean multivariate Gaussian with Σii = 1, and they are the following:

• Scenario 1 : two variables with a strong correlation, such that Σ12 = Σ21 = 0.99,

and Σij = 0 for all the other i ̸= j. The coefficients are then β∗ = (1, 0, . . . , 0).

• Scenario 2 : two batches of 3 highly correlated variables, such that Σij = 0.9 if

i, j ∈ {1, 2, 3} or i, j ∈ {4, 5, 6}, and Σij = 0 otherwise. The coefficients are β∗ =

(3, 3,−2, 3, 3,−2, 0, . . . , 0).

Simulations are ran also on a sample of uncorrelated data (scenario 3 ), where X has

covariance Σij = 0 for all i ̸= j, and β∗ = (2,−3, 2, 2,−3, 3,−2, 3,−2, 3, 0, . . . , 0).

The response vector is then generated as y ∼ N (Xβ∗
0 , σ

2), with σ2 = 1 and β∗
0 =

SNR
√

σ2 log(p)
n

β∗, where SNR is a parameter set at SNR = 2. Another nontrivial example

considered for the simulations is taken from Ročková and George (2018), where it was used

39
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to test the efficacy of the spike-and-slab LASSO, another state-of-the-art BVS method.

The simulation (scenario 4 ) considers a data matrix X generated from a multivariate

Gaussian with mean 0p and block-diagonal covariance matrix Σ = bdiag(Σ̃, . . . , Σ̃),

where each Σ̃ = (σ̃ij)5
i,j0, with σ̃ij = 0.9, i ̸= j and σ̃ii = 1. The vector of coeffi-

cients β0 has 6 nonzero entries, one for each of the first 6 blocks Σ̃. These coefficients

are 1√
3{−2.5,−2,−1.5, 1.5, 2, 2.5}, assigned at positions {1, 51, 101, 151, 201, 251}. The

authors consider a setting where n = 100 and p = 1000, and responses are generated as

y ∼ N (Xβ∗
0 , σ

2). This setting is particularly challenging for variable selection tasks, as

the high correlation in each block makes it difficult to identify the true components of the

model.

4.1.1 Convergence of the chains

The first simulation considers scenario 1, having two strongly correlated variables. Data

were simulated for n = 100 and p = 1000, and the three algorithms were run for 3

repetitions with the same data. It can clearly be seen from Figure 4.1 that the performance

in terms of convergence of the three algorithms differs dramatically. A similar plot is

present in Zanella and Roberts (2019). While wTGS is consistent in its estimates of

the PIPs across different repetitions, GS seems to get stuck in one of the two strongly

correlated variables, and TGS converges very slowly. This should be attributed to the

very large p, since every variable in GS and TGS is updated with uniform probability

over {1, . . . , p}, inducing fewer updates on the two variables with high PIP as compared

to wTGS. The argument is confirmed by the trace plots in Figure 4.2, displaying clearly

the frequency of the updates for each of the two variables in 1,000 illustrative iterations

of the chains.
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Figure 4.1: Estimated posterior inclusion probabilities (PIPs) across 20,000 iterations of
a GS (black line), TGS (blue line), and wTGS (red line). Each of the three columns
represent a run of the algorithms, keeping the same data across runs.
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Figure 4.2: Trace plots for two strongly correlated binary variables γ1 and γ2, when
p = 1000.
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4.1.2 Full comparison

Following a setting similar to Ročková and George (2018) and Bai et al. (2021), an ex-

periment was conducted by averaging a set of quantities of interest across 50 repetitions

of the algorithms. Such quantities are the mean squared error (MSE) with respect to the

true coefficients, that is 1
p
||β∗

0 − β̂||22, the false discovery rate (FDR), false nondiscovery

rate (FNR), and Matthews correlation coefficient (MCC), defined as

FDR = FP

TN + FP
, FNR = FN

TP + FN
(4.1)

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.2)

for TP, FP, TN, FN being true and false positives and true and false negatives, defined

for the inclusion variables γ with respect to the true data generating scheme. The MCC

coefficient is particularly interpretable, as it ranges from -1 to 1 indicating lower to higher

degrees of correct classification. For the MSE, the point estimates β̂ correspond to the

conditional expectation E[β|γ̂M , Y, σ
2] = c

1+c
β̃γ̂M

, where γ̂M is the maximum a posteriori

(MAP) and β̃γ̂M
is obtained by least squares considering only the variables in γ̂M . Other

quantities recorded at each run are estimated model size (DIM), the percentage of times

the MAP γ̂M corresponded to the true model (TRUE), the average variance across the

Monte Carlo estimates of the PIPs (MCVAR), and execution time (TIME).

Table 4.1 displays estimates of such quantities based on 50 repetitions of each algo-

rithm. Each chain was ran for 25,000 iterations, with a burn in of 5,000 iterations. While

the data matrix X and the true coefficients β∗
0 were kept fix, the response vector Y used

by the three algorithms was generated anew at each run, in order to account for the

variability induced by the error term in Y . The table provides numerous insights about

the algorithms. For the first two scenarios considered in Zanella and Roberts (2019),

TGS and wTGS outperform the standard GS in every metric, with an execution time
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that is between two and three times larger. In the uncorrelated case, the three methods

perform equivalently in all the metrics assessing convergence to the true model, but esti-

mates obtained with TGS and wTGS present a significantly lower variance by virtue of

the Rao-Blackwellized estimators. A particularly promising improvement is observed in

the fourth scenario, with several blocks of correlated variables among which only one is

actually included in the true model. The four metrics assessing the goodness of the MAP

estimate (MSE, FDR, FNR, DIM) show considerable improvements when TGS and wTGS

are used, and a noteworthy result is the relative number of times the MAP corresponded

to the true model (TRUE). While GS is unable to identify the original components of γ

in the 25,000 iterations for which the algorithm was ran, the tempered Gibbs samplers

do so roughly one-fifth of the time. This makes them directly comparable to other state-

of-the-art techniques like spike-and-slab Lasso, that in its different variations reached the

true model between 20 and 23 percent of the times (Ročková and George, 2018).
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MSE FDR FNR MCC DIM TRUE MCVAR TIME

sc
en

ar
io

1 GS 4.5755 5e-04 0.46 0.5337 1.06 0.52 1.0000 1.0000

TGS 4.8135 4e-04 0.38 0.6079 1.06 0.58 0.3099 2.0473

wTGS 4.8135 4e-04 0.38 0.6079 1.06 0.58 0.2392 2.1570

sc
en

ar
io

2 GS 47.0544 0 0.0433 0.9738 5.78 0.74 1.0000 1.0000

TGS 47.0516 0 0.0333 0.9810 5.82 0.78 0.4922 2.6939

wTGS 47.0516 0 0.0333 0.9810 5.82 0.78 0.4867 2.6142

sc
en

ar
io

3 GS 47.4723 1e-04 0 0.9953 10.1 0.9 1.0000 1.0000

TGS 47.4723 1e-04 0 0.9953 10.1 0.9 0.6024 3.3683

wTGS 47.4723 1e-04 0 0.9953 10.1 0.9 0.6042 3.2826

sc
en

ar
io

4 GS 9.4871 0.0042 0.6933 0.3002 6.04 0.00 1.0000 1.0000

TGS 4.9712 0.0023 0.3900 0.6086 5.98 0.20 0.4260 2.7669

wTGS 4.9421 0.0023 0.3800 0.6187 5.98 0.22 0.3551 2.7484

Table 4.1: Comparison of quantities of interest averaged over 50 repetitions of each algo-
rithm. MCVAR and TIME are displayed relatively to GS.
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Future developments

While quicker rates of convergence have been empirically observed for the TGS and wTGS

algorithms in comparison to a standard Gibbs sampler, the main limitation of the algo-

rithms lies in computational cost. Operations related to the requirement of recomputing

the full conditionals for every element of γ at each step are what increase the cost of each

iteration of TGS and wTGS by a factor of p/|γ| if compared to a standard GS, as seen

in section 3.2.2. In the setting under consideration, that is for high-dimensional problems

where p ≫ |γ|, the computational burden implied by the algorithms can dramatically

impact their efficiency.

5.1 Blocked wTGS

A possible solution would be to induce sparsity by a cheap method, that rules out quickly

a subset of variables having inclusion probability close to zero, and to identify a set of

promising variables. Denoting such a set as S and its dimensionality as m, where m < p,

it would then be possible to run a Markov chain resembling the one induced by wTGS, but

updating only the full conditionals of the variables γi in the set S of promising variables.

The requirement to compute full conditionals for all of the p elements of γ at each iteration

46
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would then be lifted, resulting in a reduced computational complexity by a factor of m/p

compared to wTGS. In order to ensure convergence to the posterior f(γ) = p(γ|Y ) of the

new algorithm, simulations from the new Markov chain would need to be sampled in an

alternate way from the one induced by the original wTGS of Algorithm 4 targeting all

variables. The resulting Markov kernel would then resemble a composition of kernels as

seen in Section 2.2.2, with the composition either being a cycle as in 2.4 or a mixture as

in 2.3. While the complete wTGS would have a computational complexity of O(nps) (see

Section 3.2.2), the kernel focusing on the reduced target would have a cost that is reduced

by a factor of m/p, translating in a O(nms) cost. The complexity of the composition of

kernels would still be dominated by the cost of the component targeting the entire set of

variables, but devising a clever updating strategy would boost the speed of convergence

for the variables in the set S.

Let PA(γ, γ′) denote the transition matrix of the discrete-time Markov chain for the

wTGS procedure (with k = 0 for ease of notation). As presented in the supplement to

Zanella and Roberts (2019), entries are PA(γ, γ′) = 0 when γ−i ̸= γ′
−i, whereas when

γ−i = γ′
−i,

PA(γ, γ′) = pi(γ)∑p
j=1 pj(γ)g(γ

′
i|γ′

−i) = p(γi = 1|γ−i)
4∑p

j=1
p(γj=1|γ−j ,Y )
2p(γj=1|γ−j ,Y )p(γi|γ−i, Y )

. (5.1)

The transition kernel is fZ-invariant, as it can be easily proven to be fZ-reversible.

Let PB(γ, γ′) denote the transition matrix of the Markov chain for the subroutine

focusing on the variables in the set S. From Theorem 6, it is sufficient to devise an

algorithm satisfying invariance with respect to fZ for the mixture of kernels P = αPA +

(1 − α)PB to convergence asymptotically to fZ, as the irreducibility of PA(γ, γ′) would

provide a sufficient condition. Future lines of research on the topic could be focused on

devising a routine such that the discrete-time Markov chains satisfies fZ-reversibility.

Another possibility would be to consider a continuous-time version of the Markov chain.
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This version has been considered for TGS and wTGS in Section 4.5.1 of Zanella and

Roberts (2019), and the jump matrix for the continuous-time Markov chain of the latter

algorithm is defined as QA(γ, γ′) = Z(γ)PA(γ, γ′). Let s = Ef [|γ|], then

QA(γ, γ′) = 1
s

p∑
i=1

p(γi = 1|γ−i, Y )
p(γi|γ−i, Y ) 1(γ−i = γ′

−i) γ′ ̸= γ; γ′, γ ∈ {0, 1}p, (5.2)

and the diagonal entries would be QA(γ, γ) = −∑γ′ ̸=γ QA(γ, γ′).

5.1.1 Continuous-time Markov chains for variable selection

The idea of using continuous-time Markov chain Monte Carlo samplers for variable se-

lection problems for Bayesian linear regression problems dates back to Stephens (2000).

His approach is to use a birth and death MCMC, but while he outlined a possible gen-

eral approach for continuous-time MCMC, he did not specialize it to BVS, giving only a

general idea of the problem setting. The version reported below connects such a setting

presented in Stephens (2000) with the general approach as it was reported in Robert and

Casella (2004).

For p possible variables each associated to a coefficient βi ∈ R, i = 1, . . . , p, a model

containing s many variables can be represented by a set of s points {(i1, βi1), . . . , (is, βis)}

in {1, . . . , p} × R where each ij ∈ {1, . . . , p}, j = 1, . . . , s and ij ̸= ih, ∀ j, h. For short,

let θs indicate such a set of points. The prior for i being in the model (γi = 1 in the

usual notation) is defined as p(i) and it is independent for all i, while the prior for βi

conditionally on i being included is p(βi), independent for all i. The joint distribution is

then defined as

π(s, θs) =


0, if ia = ib for some a, b,

p(i1)p(βi1) . . . p(is)p(βis), otherwise.
(5.3)
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A birth in the process corresponds to the inclusion in the model of a new point (i, βi),

while death to an exclusion from the model.

Following results from Green (1995), switching between configurations of different di-

mensionality is possible by imposing a dimension matching condition, that can be outlined

as follows. Let s < ℓ, then the dimensions of the two configurations θs and θℓ are matched

by sampling a random vector us,ℓ of length m1 from a known density ϕs,ℓ(us,ℓ), indepen-

dent of θs. The configuration θs and the simulated us,ℓ are then mapped to a new state

θℓ by a function Tsℓ(θs, usℓ). If the reverse move were to be performed, it would similarly

be possible to obtain θs by a deterministic function Tℓs(θℓ, uℓs), with uℓs being a vector of

length m2 sampled from ϕℓ,s(uℓ,s). The condition for dimension matching is then satisfied

if the mapping between (θℓ, uℓs) and (θs, usℓ) is bijective, and the lengths of uℓs and usℓ

satisfy ℓ+m2 = s+m1.

The time spent by the continuous-time Markov chain at configuration θs is V ∼

Exp(qs), with qs depending on θs, and then a switch is made according to the transition

kernel. Transition rates include a term corresponding to the determinant of the Jacobian

matrix of Tsℓ(θs, usℓ), arising from the change of variables by the function Tsℓ (Fan and

Sisson, 2011). The procedure is described in Algorithm 5.

Algorithm 5 Continuous-time MCMC

For θ(t) = (s, θs):

1: For each ℓ ∈ {1, . . . , p}, draw us,ℓ ∼ ϕs,ℓ satisfying the dimension matching condition.
2: Compute transition rates

qsℓ = p(y|θℓ)π(ℓ, θℓ)
p(y|θs)π(s, θs)

ϕℓ,s(uℓ,s)
ϕs,ℓ(us,ℓ)

∣∣∣∣∣∂Tsℓ(θs, usℓ)
∂(θs, usℓ)

∣∣∣∣∣
3: Compute

qs = qs1 + · · ·+ qsp.

4: Generate arrival time t+ V , for V ∼ Exp(qs).
5: Select the move to j ∈ {1, . . . , p} with probability qsj/qj.
6: Set time at t = t+ V , set θ(t) = (j, θj)
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Moves are always accepted, but configurations with low posterior probability die sooner

in the process than ones with higher probability, as the transition rates are directly in-

fluenced by such quantities. Since E[V ] = 1/qs, a larger p(y|θℓ)π(ℓ, θℓ) reduces the time

until a jump to configuration θℓ, making such configuration more likely to be visited in

the path of the chain.

Ensuring that the Markov process is invariant to a distribution proportional to the

posterior amounts to verifying that the local detailed balance is satisfied (Cappé et al.,

2003), that is

p(y|θs)π(s, θs)qsℓ(θs, θℓ) = p(y|θℓ)π(ℓ, θℓ)qℓs(θℓ, θs). (5.4)

5.1.2 Future research

Devising a method to perform wTGS with a Markov chain in continuous time would

amount to defining a transition rate that is a mixture between a chain targeting the

whole set of variables as in 5.2 and one targeting only those in S. Denoting the latter as

QB, the new jump matrix would then have non-diagonal entries that are

Q(γ, γ′) = QA(γ, γ′) +QB(γ, γ′)

and diagonal Q(γ, γ) = ∑
γ′ ̸=γ Q(γ, γ′). Future lines of work could focus on devising a

method to sample from the continuous-time Markov chain just described while making

sure that the composition satisfies the local detailed balance condition. This would ensure

f -invariance of the chain, and in turn, convergence to stationarity.
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Conclusion

The thesis has shown the advantages of the computational methods related to tempered

Gibbs sampling techniques proposed in Zanella and Roberts (2019), providing a compre-

hensive review of the theoretical results that are foundational to the context of Bayesian

variable selection. Particular attention was directed to the practical and methodological

aspects of the task while justifying the usage of the algorithms under consideration. An

alternative implementation based on some basic results from numerical linear algebra was

presented in Section 3.1.2, with the potential of easing the implementation of the method

when both the dimensionality of the features and the number of relevant ones are large.

The study on simulated data in Section 4.1.2 has highlighted the practical advantage of

the algorithm over traditional Gibbs sampling techniques in high-dimensional settings,

showing a significantly higher ability to accurately identify the set of predictors in a

Bayesian linear regression model. The performance in such a task was shown to be com-

parable to that of other state-of-the-art methods like the spike-and-slab Lasso by Ročková

and George (2018). Finally, directions for possible extensions of the model that would

leverage properties of continuous-time Markov chains were proposed in Section 5.1. Such

techniques are particularly worthy of exploration, as they could reduce the computational

cost of the scheme if implemented as generally outlined in the section.
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Appendix A

Alternative implementations

A.1 Recursive Cholesky updates

Consider a positive semidefinite matrix of the type A = X ′X. Let C be the lower

triangular matrix satisfying CC ′ = A, namely the Cholesky factor. If a column at the

jth position is removed from X, it is possible to obtain updates of the Cholesky factors

as follows. It should first be noted that in the case where j is the last column, the new

Cholesky factor C̃ can be obtained by simply removing the last row and the last column.

X ′X =
[
X1:j−1 xj Xj+1:n

]′ [
X1:j−1 xj Xj+1:n

]

=


X ′

1:j−1X1:j−1 X ′
1:j−1xj X ′

j+1:nX1:j−1

x′
jX1:j−1 x′

jxj x′
jXj+1:n

X ′
j+1:nX1:j−1 X1:j−1xj X ′

j+1:nXj+1:n



=


C11

c12 c22

C31 c32 C33



′ 
C11

c12 c22

C31 c32 C33


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Deleting column j we get

A =

C̃11

C̃21 C̃22


′ C̃11

C̃21 C̃22


where

C̃11 = C11

C̃21 = C31

C̃22C̃
′
22 = C33C

′
33 + c32c

′
32,

and the last operation is a rank-one update that can be computed efficiently. Derivations

for the computation of recursive updates follow Anderson et al. (1999), and alternative

implementations can be obtain by applying Givens rotations to C after having removed

the jth row and column. What follows is the R code for the operations described above,

and the rank-one update is based on the code by Stewart (1998). The same result is

attainable by using the function choldrop of the mgcv library. The latter procedure is

faster, as it is implemented in C.

cholupdate <- function (S,k){
S <- t(S)
K <- dim(S)[1]
if (K==k){

R <- S[1:(k -1) ,1:(k -1)]
return (t(R))

}
x <- S[(k+1):K,k]
L <- S[(k+1):K,(k+1):K]
n <- length (x)
if (K==k+1){

r <- sqrt(L^2 + x^2)
L <- r

}else{
for (i in 1:n){

r <- sqrt(L[i, i]^2 + x[i]^2)
c <- r / L[i, i]
s <- x[i] / L[i,i]
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L[i, i] <- r
if (i < n){

L[(i+1):n, i] <- (L[(i+1):n, i] + s * x[(i+1):n]) / c
x[(i+1):n] <- c * x[(i+1):n] - s * L[(i+1):n, i]

}
}

}
R <- zeros(K-1,K -1)
R[1:(k -1) ,1:(k -1)] <- S[1:(k -1) ,1:(k -1)]
R[k:(K -1) ,1:(k -1)] <- S[(k+1):K ,1:(k -1)]
R[k:(K-1),k:(K -1)] <- L
return (t(R))

}

A.2 Full conditional with no inversion

The following code, based on the one provided in the supplement to Zanella and Roberts

(2019), computes the full conditionals in 3.1.2 without the need to invert the matrix

X ′
γXγ, using instead Cholesky decomposition and recursive updates of Cholesky factors.

The inputs of the function full_cond are gamma, indicating whether each variable is in-

cluded or excluded, and hyper_par, containing the matrices X ′X, Y ′X, and Y ′Y , and

the parameters c and h defined as in 3.6. The function returns a vector of full conditional

probabilities for each γi, i = 1, . . . , p. The ancillary function ch_noinv replicates the pro-

cedure described in Algorithm 1, taking as input an upper triangular Cholesky factor and

the vector or matrix V . The output is V ′(X ′
γXγ)−1V . The function ch_noinv_bilinear

takes an upper triangular Cholesky as before, two vectors or matrices W and V , and

returns W (X ′
γXγ)−1V .

Comparisons of the different routines to obtain full conditionals are reported in Table

A.1, with data simulated for n = 500 and a dependency structure equal to that of scenario

1 in Section 4. The schemes were tested for different choices of p and of |γ|, with the

latter being set by defining a variable w such that p(γi = 1) = w, i = 1, . . . , p.
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w = 0.1 w = 0.05 w = 0.01

elapsed relative elapsed relative elapsed relative

p
=

50
0 No inversion, package 37.94 1.000 10.80 1.000 1.38 1.290

No inversion, no package 225.67 5.948 56.72 5.252 2.55 2.383

Inversion 44.48 1.172 10.89 1.008 1.07 1.000

p
=

25
0 No inversion, package 6.61 1.025 2.05 1.079 0.67 1.175

No inversion, no package 37.95 5.884 6.81 3.584 1.05 1.842

Inversion 6.45 1.000 1.90 1.000 0.57 1.000

p
=

10
0 No inversion, package 2.17 1.212 0.88 1.189 0.20 1.053

No inversion, no package 8.25 4.609 1.75 2.365 0.19 1.000

Inversion 1.79 1.000 0.74 1.000 0.23 1.211

Table A.1: Time comparison over 2,000 runs for computing the full conditionals. "No
inversion, no package" rows are computed with the code reported below, "No inversion,
no package" rows are computed using the mgcv package, "Inversion" rows are computed
with the original version of the code.

Functions for computing full conditionals

full_cond <- function (gamma ,hyper_par=NULL ){
fc <-rep(NA , length (gamma ))
included <-which(gamma ==1)
p_gamma <-sum(gamma)
n<-hyper_par$n
p<- length (gamma)
h<-hyper_par$prior_p_incl
c<-hyper_par$c
yty <-hyper_par$yty
ytX <-hyper_par$ytX
XtX <-hyper_par$XtX
if(p_gamma ==0){

S_old <-yty
for (j in 1:p){

S_new <-yty -c/(1+c)* ytX[j]^2/XtX[j,j]
post_ratio <-h/(1-h)*(S_old/S_new )^(n/2)/( sqrt(1+c))
fc[j]<-1/(1+post_ratio)

}
}else{

ytX_gamma <- matrix (ytX[ included ],nrow = p_gamma ,ncol = 1)
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U = chol(XtX[included , included ])
ytXFXty <-as. numeric (ch_noinv(U,ytX_gamma ))
S_old <-yty -c/(1+c)* ytXFXty
P = ch_noinv00(U,XtX[included ,])
d_vec <-1/( diag(XtX)-P$B+10e-10)
ytXFXtxj _vec <-t(ytX_gamma )%*%P$W
S_new_vec <-yty -c/(1+c)*( ytXFXty +d_vec *( ytXFXtxj _vec -ytX )^2)
post_ratio_vec <-h/(1-h)*(S_old/S_new_vec )^(n/2)/( sqrt(1+c))
fc <-1/(1+post_ratio_vec)
for (j in included ){

if(p_gamma ==1){
S_new <-yty

}else{
pos_rem <-which( included ==j)
included _new <- included [-pos_rem]
ytX_gamma_new <- matrix (ytX[ included _new],nrow = 1,ncol = p_gamma -1)
U_star <- cholupdate (U,pos_rem)
ytXFXty _new <-ch_noinv(U_star ,t(ytX_gamma_new ))
S_new <-yty -c/(1+c)* ytXFXty _new

}
post_ratio <-(1-h)/h*(S_old/S_new )^(n/2)*( sqrt(1+c))
fc[j]<-1/(1+post_ratio)

}
}
output <-list(fc=fc)
return ( output )

}

ch_noinv <- function (U,v){
if ( length (U)==1){

output <-drop(U)^(-2)*(t(v)%*%v)
return ( output )

}
z = forwardsolve (t(U),v)
w = backsolve (U,z)
output <-t(v)%*%w
return ( output )

}

ch_noinv_bilinear <- function (U,w,v){
if ( length (U)==1){

output <-drop(U)^(-2)*(w%*%v)
return ( output )

}
z = forwardsolve (t(U),v)
w = backsolve (U,z)
output <-w%*%w
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return ( output )
}

A.3 TGS for a bivariate normal distribution

Let the random vector (Y1, Y2) ∼ N (µ,Σ), where µ = [ 0 0 ] and Σ =
[
1 ρ
ρ 1

]
. The

following R functions enable to sample from the joint distribution of (Y1, Y2) using a

random-scan GS and a TGS with tempered proposal. In order to generate proposals from

a tempered version of the full conditionals, a rejection sampling approach is used, with a

uniform distribution covering most of the domain of the tempered full conditional, that is

rescaled by an (arbitrary) factor, here set to β, such that the whole distribution lies below

the uniform. An alternative (and more efficient) version could be implemented by com-

puting analytically the normalization constant related to the tempered full conditional.

In TGS_normal, the tempering coefficient β is automatically set to be 1− ρ.

dnorm_beta <- function (beta ,x,mu=0,sd=1){
return (dnorm(x,mu ,sd)^ beta)

}

rejection _ sampling <- function (beta ,r,mu=0,sd=1){
x <- runif(1,-r,r)
u <- runif(1,0,dunif(x,-r,r))
if (u<( dnorm_beta(beta ,x,mu ,sd)* beta )){

return (x)
}else{

rejection _ sampling (beta ,r,mu ,sd)
}

}

pfull_cond_ normal <- function (i,x,mu ,Sigma ){
j <- -i+3
mean <- mu[i] + Sigma[i,j]/ Sigma[j,j]*(x-mu[j])
var <- Sigma[i,i] - Sigma[i,j]^2/Sigma[j,j]
return (c(mean ,sqrt(var )))

}
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rfull_cond_ normal <- function (i,x,mu ,Sigma ){
j <- -i+3
mean <- mu[i] + Sigma[i,j]/ Sigma[j,j]*(x-mu[j])
var <- Sigma[i,i] - Sigma[i,j]^2/Sigma[j,j]
return (rnorm(1,mean ,sqrt(var )))

}

GS_ normal <- function (mu ,Sigma ,first_fixed=NA ,T=100,burn_in=10){
if ((NA %in% first_fixed )== TRUE ){

y<-rnorm(2)
}else{

y<-first_fixed
}
sample <-data.frame(y1=rep(NA ,T-burn_in),y2=rep(NA ,T-burn_in))
sample [1,c(1,2)]<-y
for (t in 2:T){

u <- runif(1)
if (u<1/2){

i <- 1
}else{

i <- 2
}
j <- -i+3
y[i] <- rfull_cond_ normal (i,y[j],mu ,Sigma)
if (t>burn_in){

sample [t,c(1,2)]<-y
}

}
return ( sample )

}

TGS_ normal <- function (mu ,Sigma ,first_fixed=NA ,T=100,burn_in=10){
if ((NA %in% first_fixed )== TRUE ){

y<-rnorm(2)
}else{

y<-first_fixed
}
sample <-data.frame(y1=rep(NA ,T-burn_in),y2=rep(NA ,T-burn_in),

weight =rep(NA ,T-burn_in))
par1 <- pfull_cond_ normal (1,y[2],mu ,Sigma)
g1<-dnorm_beta(1-Sigma[1,2],y[1],par1[1],par1[2])
par2 <-pfull_cond_ normal (2,y[1],mu ,Sigma)
g2<-dnorm_beta(1-Sigma[1,2],y[2],par2[1],par2[2])
p <- c(g1/dnorm(y[1],par1[1],par1[2]),g2/

dnorm(y[2],par2[1],par2[2]))
print(c(par1,g1,par2,g2))
w <- 2/sum(p)



64 APPENDIX A. ALTERNATIVE IMPLEMENTATIONS

sample [1,c(1,2)] <- y
sample [1,3] <- w
for (t in 2:T){

u <- runif(1)
if (u<p[1]/ sum(p)){

i <- 1
}else{

i <- 2
}
j <- -i+3
par <- pfull_cond_ normal (i,y[j],mu ,Sigma)
y[i] <- rejection _ sampling (1-Sigma[1,2],50,par[1],par[2])
parj <- pfull_cond_ normal (j,y[i],mu ,Sigma)
p[i] <- dnorm_beta(1-Sigma[1,2],y[i],par[1],par[2])/

dnorm(y[i],par[1],par[2])
p[j] <- dnorm_beta(1-Sigma[1,2],y[j],parj[1],parj[2])/

dnorm(y[j],parj[1],parj[2])
w <- 2/sum(p)
if (t>burn_in){

sample [t,c(1,2)] <- y
sample [t,3] <- w

}
}
sample [" weight "] <- sample [" weight "]/ sum( sample [" weight "])
return ( sample )

}
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